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Abstract

Classification of satellite imagery to determine land cover type is a challenging
task, primarily owing to the high intra-class variability in the classes of land cover
under consideration. In this paper, we explore different pre-trained deep neural
networks for this purpose. By fine-tuning and adapting the models to train on a
labeled satellite imagery dataset, we find that these redesigned deep architectures
outperform other proposed methods which involve complex representations of the
imagery, simply by training on raw images without any kind of elaborate trans-
formations. We finally determine the best model thus obtained, and use it to then
quantify the urban tree canopy coverage in the city of Atlanta.

1 Introduction

Deep Learning has gained popularity over the last decade due to its ability to learn data represen-
tations in an unsupervised manner and generalize to unseen data samples using hierarchical repre-
sentations [I]. This ability gives way to leveraging the “knowledge” gained by a deep architecture
in one domain in order to establish an intrinsic representation that is universal across other similar
domains.

In this paper, we try to substantiate this assertion by adopting deep convolutional neural networks
that have been trained to identify different taxonomies of objects and scenes from everyday life, and
repurpose them to predict urban tree canopy coverage from satellite imagery.

Under the hood, deep architectures are based on convolutional neural networks, which are very
similar to ordinary neural networks: they are made up of neurons that have learnable weights and
biases. However, convolutional neural networks make the explicit assumption that the inputs are
images, which allows us to encode certain properties into the architecture [2].

Traditional neural networks receive an input (a single vector), and transform it through a series of
hidden layers. Each hidden layer is made up of a set of neurons, where each neuron is fully con-
nected to all neurons in the previous layer, and where neurons in a single layer function completely
independently and do not share any connections. The last fully-connected layer is called the output



layer and in classification settings it represents the class scores. However, regular neural networks
dont scale well to full images. The full connectivity in neural networks is wasteful and the huge
number of parameters quickly lead to overfitting. On the other hand, convolutional neural networks
take advantage of the fact that the input consists of images and they constrain the architecture in a
more sensible way, which we will see in the next section.

Our aim in this paper is to leverage this sensibility, coupled with prior knowledge of high level
representations, to accomplish the task of classifying satellite imagery.

2 Related Work

Deep learning has recently proven to break many barriers in the field of machine learning, especially
in the domain of image recognition. In this regard, it is also an upcoming tool in the domain of
satellite imagery classification.

Castelluccio et al. in [B] show promising results for using convolutional neural networks to determine
land use type with remote sensing images. They demonstrate how fine-tuning a pre-trained deep
convolutional neural network may lead to better classification accuracies on the UC Merced Land
Use dataset and the Brazilian Coffee Scenes dataset.

Basu et al. in [[I] further show how deep architectures could be coupled with newly derived features
such as Enhanced Vegetation Index (EVI), Normalized Difference Vegetation Index (NDVI) and
Atmospherically Resistant Vegetation Index (ARVI) to segregate even highly correlated classes such
as trees and grasslands. These indices are determined from satellite imagery RGB and near-IR (NIR)
spectra as follows:

NIR — Red

EVI=G
x NIR — ¢req X Red — cpiye X Blue + L

Here, the coefficients G, ¢ed, Chiue and L are chosen to be 2.5, 6, 7.5 and 1 following those adopted
in the MODIS EVI algorithm.
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They propose a novel framework based on deep learning called DeepSat for classifying land cover
types from satellite imagery. They also make available labelled satellite imagery datasets, SAT-4
and SAT-6, for researchers working in the domain of classification of satellite imagery.

Works such as these lend greatly to the utility of deep learning in the domain of classification of
remote sensing data. Deep learning architectures such as those used in the above cited works are
greatly vested in the efficient functionality of convolutional neural networks. Although this concept
has been around for a long time [S], only recent technological progress, especially in the field of
Graphical Processing Units (GPUs), has made these highly viable for learning. Typically, convolu-
tional neural network architectures comprise of the following types of components [3]:

1. Convolutional layers: they compute the convolution of the input image with the weights
of the network. Neurons in the first hidden layer view only a small image window, and
learn low-level features. Those in deeper layers view (indirectly) larger portions of the
image, and are able to learn more expressive features by combining low-level ones. Each
layer is characterized by a few hyper-parameters: the number of filters to learn, their spatial
support, the stride between different windows and an optional zero-padding which controls
the size of the layer output.

2. Pooling layers: reduce the size of the input layer through some local non-linear operations,
for example max(), so as to reduce the number of parameters to learn and provide some
translation invariance. The most relevant hyper-parameters are the support of the pooling
window and the stride between different windows.



3. Normalization layers: inspired by inhibition schemes present in the real neurons of the
brain, aim at improving generalization.

4. Fully-connected layers: are typically used as the last few layers of the network. By remov-
ing constraints, they can better summarize the information conveyed by lower-level layers
in view of the final decision. Despite full connectivity, their complexity is still affordable
thanks to the previous size-reducing layers.

3 Data

3.1 SAT-6

We use the SAT-6 dataset [0] to train and evaluate the pre-trained deep convolutional neural net-
works. It consists of a total of 405,000 image patches each of size 28 x28 and covering 6 land cover
classes as shown in Table [I. Images were extracted from the National Agriculture Imagery Program
(NAIP [B]) dataset. The NAIP dataset contains a total of 330,000 scenes spanning the whole of the
Continental United States (CONUS). SAT-6 uses the uncompressed digital Ortho quarter quad tiles
(DOQQs) which are GeoTIFF images the area of which corresponds to the United States Geolog-
ical Survey (USGS) topographic quadrangles. The average image tiles are ~6000 pixels in width
and ~7000 pixels in height, measuring around 200 megabytes each. The entire NAIP dataset for
CONUS is ~65 terabytes. The imagery is acquired at a ground sample distance (GSD) of 1 meter.
The horizontal accuracy lies within 6 meters of ground control points identifiable from the acquired
imagery. The images consist of 4 bands - red, green, blue and Near Infrared (NIR). In order to main-
tain the high variance inherent in the entire NAIP dataset, the image patches in SAT-6 are sampled
from a multitude of scenes (a total of 1500 image tiles) covering different landscapes like rural areas,
urban areas, densely forested regions, mountainous terrain, small to large water bodies, agricultural
areas, etc. covering the whole state of California. An image labeling tool was used to manually label
uniform image patches belonging to a particular landcover class to create the labelled SAT-6 dataset.

Figure 1: Sample images from the SAT-6 dataset

Once labeled, 28 x 28 non-overlapping sliding window blocks were extracted from the uniform im-
age patch and saved to the dataset with the corresponding label. 324,000 images (comprising of
four-fifth of the total dataset) were chosen as the training dataset and 81,000 (one-fifth) were cho-
sen as the testing dataset. the training and test sets were selected from disjoint NAIP tiles. Once
generated, the images in the dataset were randomized. The specifications for the various landcover
classes of SAT-6 were adopted from those used in National Land Cover Data (NLCD) [9].



Table 1: Land cover classes covered by SAT-6 dataset with their corresponding labels

Label Class no. of samples (train) no. of samples (test)
0 barren land 14,923 3,714
1 grassland 73,397 18,367
2 trees 56,809 14,185
3 roads 50,347 12,596
4 buildings 8,192 2,070
5 water bodies 120,332 30,068

3.2 WorldView-2 Satellite Imagery

The satellite imagery for the city of Atlanta was obtained from satellite images taken by Digital-
Globe’s WorldView-2 Satellite Sensor. This satellite operates at an altitude of 770 kilometers and is
able to sweep nearly 1 million km? every day. Its advanced on-board imaging system can capture
pan-sharpened (0.46 meters GSD at Nadir, 0.52 meters GSD at 20° Off-Nadir) as well as multispec-
tral (1.84 meters GSD at Nadir, 2.4 meters GSD at 20° Off-Nadir) images.

The imagery for the city of Atlanta is provided in the form 2 overlapping products as shown in
Figure D. Each product further consists of 2 formats - pan-sharpened and multispectral.
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Figure 2: WorldView-2 satellite imagery layout

The multispectral imagery which is obtained at a resolution of 1.84 meters GSD consists of 8-band
spectra: red, green, blue, near-IR, red edge, coastal, yellow, near-IR2. The first 3 bands were then
combined to create a composite that represented the true color of the satellite imagery as shown in
Figure 8.

Having obtained the true color of the satellite imagery, the products were clipped into 28 x28 non-
overlapping sliding window blocks following the format of the SAT-6 dataset. We determined that
the resolution of the multispectral imagery was sufficient to provide the same context as the SAT-6
dataset when clipped, and hence decided to only use the RGB bands for this paper as opposed to the
pan-sharpened imagery which was available at a higher resolution.
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Figure 3: WorldView-2 multispectral bands
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Figure 4: True color imagery obtained from RGB multispectral bands



4 Methodology and Investigation

The approach we follow in this paper to assess the urban tree canopy in Atlanta can be broadly
broken down into the following steps:

1. fine-tune existing state-of-the-art, pre-trained deep neural networks so that they can be
trained on the SAT-6 dataset

2. train the fine-tuned models on the SAT-6 dataset and determine the best model that can
classify land cover types based on testing accuracy

3. use the best trained model to determine the land cover type across Atlanta using the city’s
satellite imagery dataset

4. evaluate the urban tree cover of Atlanta based on the land cover classification obtained.

4.1 Fine-Tuning Pre-Trained Deep Convolutional Neural Networks
For this paper, we consider 3 pre-trained networks, namely:

1. AlexNet [[7], trained on ILSVRC 2012 dataset for 360,000 iterations
2. GoogLeNet [I7], trained on ILSVRC 2012 dataset for 2,400,000 iterations

3. Places205-VGG [I0], which itself is a fine-tuned variant of the popular VGG-16 CNN [[I],
trained on 205 scene categories of Places Database with 2.5 million images

We used the Caffe [B] deep learning framework to fine-tune, train and deploy the models. These
models were obtained from the Caffe Model Zoo [], which is a repository for popular CNN archi-
tectures, and also provides access to pre-trained model weights in the form of .caffemodel binaries.
The models are stored in the form of .prototxt files and simply contain a sequential layer-by-layer
description of the model.
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Figure 5: Original architecture of AlexNet

To fine-tune the models, we began with replacing the last layer of each model (usually a fully-
connected neural network with 1,000 output nodes) with a fully-connected neural network with 6
output nodes, corresponding to the 6 classes of land cover types covered by the SAT-6 dataset.
We then updated intermediate pooling layers so that signals from our images of size 28 x28 could
propagate through the network.

Table 2: Best performing model parameters for each architecture

Model Learning Rate Gamma Weight Decay Snapshot Iteration
AlexNet 0.001 0.3 0.0005 8,400
GoogLeNet 0.0001 0.96 0.0002 8,800
Places205-VGG 0.00001 0.1 0.0004 9,700
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Figure 6: Original architecture of GoogLeNet
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Figure 7: Original architecture of VGG-16

4.2 Training Deep CNN Architectures

We experimented with different learning rates, discount factors (gamma) and weight decay values
for each model, and trained each model for 10,000 iterations. Snapshots of the weights learned by
the model were taken at every 100 iterations, from which we picked the model state that yielded the
highest testing accuracy on a small sample of the test set (800 images). This snapshot was then used
to evaluate the final overall testing accuracy for each model. Table @ shows the parameters for the
models that were finally chosen for each architecture. Raw composite images were recreated from
the RGB values in the SAT-6 dataset for training.

Figure B shows the training loss for each model evaluated at intermediate points during the training
phase. We see here that AlexNet and GoogLeNet, which were pre-trained on ILSVRC 2012 dataset
converge faster than the Places205-VGG model which has been pre-trained on scenes from the
Places Database. It is also interesting to note here that the loss does not converge satisfactorily for
the AlexNet and Places205-VGG models, which may intuitively lead to the argument that lowering
the value of the learning rate may yield a better convergence. However, trying lower values of
learning rates to train the models actually led to numeric underflows which completely halted the
optimization.
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Figure 8: Training loss for each model evaluated at intermediate iterations

4.3 Determining Land Cover Type from Satellite Imagery of Atlanta

To determine the land cover type, the multispectral satellite imagery products of Atlanta were first
divided into patches of size 28x28. As can be seen in Figure D, the products are rectangular in
shape and not all pixels contain satellite imagery, the patches with less than 60% imagery data were
discarded. This yielded 106,914 patches from product 1 and 40,538 patches from product 2. These
patches were then passed to the best performing model to predict it’s land cover type. Since the
products were overlapping, we decided not to merge them together and pursue our experiments on
both of them independently.

5 Experimental Results

5.1 Training and Testing Fine-Tuned CNNs

We trained a number of deep models by varying the model parameters for each architecture under
consideration, which amounted to ~120 hours of training time across 3 computers. In Table B we
present a comparison of the best of our fine-tuned models thus obtained with other proposed methods
in [[I] that were trained and tested on the SAT-6 dataset.

Table 3: Classification accuracy of various models

Model Testing Accuracy on SAT-6 (%)
Random Forest [100 trees] 54
Deep-Belief Network [100 n/L, 3 L] 76.47
CNN [6¢-3s(a)-12¢-3s(m), 5x5 kernel] 79.063
Stacked Denoising Autoencoder [100 n/L, 5 L] 78.43
DeepSat [50 n/L, 2 L] 93.916
fine-tuned AlexNet 98.227
fine-tuned Googl.eNet 99.058
fine-tuned Places205-VGG 97.896

In Table B, the Ac-Bs(n) notation denotes that the network has a convolutional layer with A feature
maps followed by a sub-sampling layer with a kernel of size BxB. n denotes the type of pooling
function in the sub-sampling layer, a denotes average pooling while m denotes max-pooling. Fur-
thermore, the x n/L y L notation denotes that the network has x neurons per layer and y such layers.
It is very interesting to note here that the fine-tuned deep neural neural networks which are only
trained on raw images outperform even the best proposed model in [[I], DeepSat, which utilizes
highly complicated reconstructed features.

Figure B shows the number of samples misclassifed by the models for each class. One compelling
insight that can be gleaned from this figure is that all 3 models almost perfectly learn how to classify
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Figure 9: No. of samples misclassified per class, for each model

water bodies, which can be attributed to the fact that water bodies have very low inter-class overlap
as compared to the other land-based classes.

5.2 Urban Tree Canopy of Atlanta

The fine-tuned GooglLeNet was used to predict the tree canopy using the 28 x28 patches clipped
from the satellite imagery of Atlanta. The patches classified as “trees” were then colored green to
obtain tree canopy maps of the city as shown in Figures [ and .
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Figure 10: Tree canopy map for Product 1 of satellite imagery

Figures M and [T show the satellite imagery on the left and the areas with predicted tree canopy
on the right. To get a better perspective of the predicted tree canopy, we overlayed the tree canopy
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Figure 11: Tree canopy map for Product 2 of satellite imagery

map on top of the imagery and reduced the opacity of the canopy layer to evaluate the quality of the
predictions. Figures [2 and [3 show the results thus obtained.

Figure 12: Tree canopy overlayed on satellite imagery

At first glance, our proposed method of determining urban tree canopy seems to give satisfactory
results (Figure I2). However, taking a closer look at the predictions (Figure [3) reaveal that the
classifier is still not as perfect as one would desire. It seems to classify any patch that contains even
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Figure 13: Tree canopy overlayed on satellite imagery (further zoomed in)

a portion of a tree in minor composition as containing trees as a whole. This may be be an artifact
of the manner in which the training data was annotated or stem from the fact that the SAT-6 dataset
was at a different resolution of GSD than Atlanta’s satellite imagery. It may be possible to make the
predictions at a finer scale by sampling overlapping patches.

6 Evaluation

Since there is no readily available annotated data for the satellite imagery of Atlanta, directly eval-
uating our proposed method to determine urban tree canopy is not trivial. We visually inspected
the results to ensure the predictions are satisfactory. We randomly sampled the satellite imagery in
a stratified manner and annotated 100 patches. We found that 86 of those patches were correctly
classified. Out of the incorrectly classified, 11 patches were such that were composed of trees in a
minor composition, and were classified as trees, whereas the annotator classified them differently.

7 Discussion and Future Directions

In this paper we show that raw satellite imagery is sufficient to classify land cover types using deep
convolutional neural networks, which are pre-trained to identify higher level hierarchical represen-
tations of a completely different problem domain. We saw that the “knowledge” gained by these
models on datasets such as ILSVRC 2012 and the Places Database can be reused to quickly learn
new representations of satellite imagery.We also show that these models outperform some proposed
methods which employ far more complicated representations of the SAT-6 dataset, for which we
were able to obtain an accuracy of 99.06% - a significant jump up from the state-of-the-art. We then
leveraged this newly trained model to obtain a tree canopy coverage for the city of Atlanta.

Even though we were able to achieve a model that surpassed the published best for the SAT-6 dataset,
closer inspection of our performance in predicting urban tree canopy for Atlanta only revealed sat-
isfactory results. We plan to make predictions at a much finer scale by sampling the patches in
overlapping strides, and determining the class labels based on majority of the prediction for the
overlapping patches. We also plan to investigate the performance of these models on multispec-
tral data trained from scratch. In order to realize this, we plan to generate a SAT-6 style annotated
dataset, which may not be as huge, but sufficient for our purpose.
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We believe that our results would open debate about simpler representation and serve as a baseline
for creating better architectures specially conforming to our problem of satellite imagery classifica-

tion.
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